پیش بینی کوتاه مدت بار به روش ماشین بردار پشتیبان
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان - دانشکده برق و کامپیوتر
- author عدنان امیدی
- adviser سعید توکلی افشاری مسعود برکاتی
- Number of pages: First 15 pages
- publication year 1392
abstract
پیش بینی کوتاه مدت مصرف بار الکتریکی نقش اساسی در بهره برداری بهینه از سیستم قدرت ایفا می کند.در این پایان نامه پیش بینی کوتاه مدت بار به وسیله ی روش ماشین بردار پشتیبان مورد مطالعه قرارگرفته شده است. عملکرد اقتصادی و قابلیت اطمینان یک شبکه وابستگی قابل ملاحظه ای به دقت پیش بینی بار دارد. پیش بینی کوتاه مدت بار الکتریکی برای برنامه ریزی در مدار قرار گرفتن نیروگاه ها، و مدیریت بار استفاده می شود. پیش بینی کوتاه مدت بار الکتریکی به دلیل تأثیرپذیری از روابط متعدد و متنوع غیر خطی بین تغییراتدوره ای روزانه و تغییرات مصرف بار از پیچیدگی خاصی برخوردار است. ماشین بردار پشتیبان از جدیدترین روش های یادگیری ماشین است که برای حل مسائل طبقه بندی و رگرسیون پیشنهاد شده است. روش مبتنی بر رگرسیون بردار پشتیبان به علت توانایی بسیار زیادی که در تخمین روابط غیر خطی دارد، یک راه حل مناسب در امر پیش بینی کوتاه مدت بار است. در این پایان نامه با استفاده از دو روش ماشین بردار پشتیبان مدلی برای پیش بینی بار الکتریکی مطرح شده است. برای 24 ساعت شبانه روز ، 24 مدل مختلف آموزش داده شده است. برای بررسی کارایی روش پیشنهادی از داده های برق استان سیستان و بلوچستان استفاده شده است. البته برای آموزش مدل داده های دیگری مثل تاریخ و نوع روز نیز مورد نیاز بود، که این داده ها نیز از تقویم استخراج شده است. دقت روش پیشنهادی با نتایج حاصل از شبکه عصبی چند لایه ی پرسپترون که یکی از متداول ترین روش ها برای انجام مسایل رگرسیون و پیش بینی می باشد مقایسه شده است.
similar resources
توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی
درماندگی مالی پیش از ورشکستگی مالی رخ میدهد و پیش بینی موثر آن یک مسئلهی مهم و چالش برانگیز برای شرکتها میباشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد میپردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آنها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی م...
full textپیش بینی قیمت برق به کمک روش ماشین بردار پشتیبان
دربازارهایبرققیمتانرژیالکتریکیدرطولروزمتغیر می-باشد.اینموضوعبرنامهریزیومدیریت مصرفمشتریان راتحت-الشعاعقراردادهاست.مصرفکنندگانانرژی الکتریکیجهتمدیریتمصرفبهینهنیازمندبهدانستن قیمتانرژیالکتریکیدرساعاتآیندهمی باشند . اینامر پیشبینیقیمتبرقرابرایمصرفکنندگانضرورینموده است. پیشبینیقیمتانرژیالکتریکیازپیچیدگیبیشتری نسبتبهپیشبینیباربرخورداراست. بارشبکهدرطولیکشبانهروزتغییراتزیادیدارد . به همیندلیلتولیدکنند...
15 صفحه اولپیش بینی بار الکتریکی در سیستم های قدرت به کمک روش ماشین بردار پشتیبان
پیش بینی دقیق بار یکی از نیازهای اساسی بازیگران بازار برق است. به علت تأثیر عوامل مختلف، بار دارای رفتار به شدت غیرخطی است. به طور معمول پیش بینی بار از نظر طول مدت افق برنامه ریزی، به چند صورت کوتاه مدت ، میان مدت و بلند مدت بار طبقه بندی شده است. پیش بینی بار کوتاه مدت(stlf) از زمان ظهور بازارهای انرژی رقابتی به طور فزاینده نقش مهمی پیدا کرده است و بیشتر پیش بینی های بار به صورت کوتاه مدت می ...
15 صفحه اولتوانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی
درماندگی مالی پیش از ورشکستگی مالی رخ می دهد و پیش بینی موثر آن یک مسئله ی مهم و چالش برانگیز برای شرکت ها می باشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد می پردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آن ها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی م...
full textپیش بینی حداکثرکشش در مهارزمینی به کمک ماشین بردار پشتیبان
یکی از مسائل اساسی در مهارهای زمینی، پیش بینی حداکثر کشش در مهارها می باشد و تاکنون به منظور پیش بینی حداکثر کشش مهار زمینی، روش های تجربی پیشنهاد شده است. این روش ها با در نظر گرفتن فرضیاتی به ساده سازی محاسبات اقدام نموده اند لیکن در پیش بینی حداکثر کشش مهار زمینی نتایج حاصل از دقت قابل قبولی در محاسبات برخوردار نمی باشد. از سوی دیگر پیشرفت های گسترده در ابداع رایانه های با قدرت محاسباتی بال...
پیش بینی ژن های بیماری با استفاده از دسته بند تککلاسی ماشین بردار پشتیبان
Abstract: In disease gene identification and classification, users are only interested in classifying one specific class, disease genes, without considering other classes (non-disease genes). This situation is referred to as one-class classification. Existing machine learning-based methods typically use known disease gene as positive training set and unknown genes as negative training set to bu...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان - دانشکده برق و کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023